Basic magnetic properties of magnetoactive elastomers of mixed content

Author:

Becker T IORCID,Stolbov O V,Borin D YuORCID,Zimmermann K,Raikher Yu LORCID

Abstract

Abstract The results of theoretical and experimental investigations of the polymer composites that belong to a class of magnetoactive elastomers with mixed magnetic content (MAEs-MC) are presented. The fundamental distinction of such composites from ordinary magnetoactive elastomers is that the magnetic filler of MAEs-MC comprises both magnetically soft (MS) particles of size 3–5 µm and magnetically hard (MH) particles whose size is an order of magnitude greater. Since MH particles of the magnetic filler are mixed into a composition in a non-magnetised state, this can ensure preparation of samples with fairly homogeneous distribution of the filler. The ‘initiation’ process of a synthesised MAE-MC is done by its magnetisation in a strong magnetic field that imparts to the sample unique magnetic and mechanical properties. In this work, it is shown that the presence of MS particles around larger MH particles, firstly, causes an augmentation of magnetic moments, which the MH particles acquire during initiation, and secondly, enhances the magnetic susceptibility and remanent magnetisation of MAEs-MC. These magnetic parameters are evaluated on the basis of the macroscopic magnetostatics from the experimental data of spatial scanning of the field over the space around MAEs-MC made in the shape of a spheroid. A set of samples with a fixed MH and varying MS volume contents that are initiated in two different fields, is used. The developed mesoscopic model of magnetic interactions between the MH and MS phases is able to explain the experimentally observed dependencies of the magnetic parameters on the concentration of the MS phase. The problem is solved numerically under the assumption that the elastic matrix of MAEs-MC is rigid, i.e. the mutual displacements of the particles are negligible. The model helps to elucidate the interaction of the magnetic phases and to establish that the MS phase plays thereby a dual role. On the one hand, the MS phase screens out the field acting inside MH particles, and on the other hand, it forms mesoscopic magnetic bridges between adjoining MH particles, which in turn enhance their field. The combined interplay of these contributions defines the resulting material properties of MAEs-MC on the macroscopic scale.

Funder

Russian Foundation for Basic Research

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference41 articles.

1. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences;Rigbi;J. Magn. Magn. Mater.,1983

2. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix;Jolly;J. Intell. Mater. Syst. Struct.,1996

3. The influence of a magnetic field on the elastic and viscous properties of magnetoelastics;Nikitin;Polymer Sci. A,2001

4. Magnetic field sensitive functional elastomers with tuneable elastic modulus;Varga;Polymer,2006

5. Magnetodeformational effect and effect of shape memory in magnetoelastics;Nikitin;J. Magn. Magn. Mater.,2004

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3