The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix

Author:

Jolly Mark R.1,Carlson J. David1,Muñoz Beth C.1,Bullions Todd A.1

Affiliation:

1. Lord Corporation, Thomas Lord Research Center, 405 Gregson Drive, Cary, North Carolina 27511

Abstract

The mechanical response of elastomer composites to applied magnetic fields is examined. These elastomer composites consist of carbonyl iron particles embedded within a molded elastomer matrix. The composite is subjected to a strong magnetic field during curing, which causes the iron particles to form columnar structures that are parallel to the applied field. This special composite geometry is known to enhance the mechanical response to the application of post-cured magnetic fields. Experimental data is presented that shows that up to a 0.6 MPa change in mechanical shear modulus (which represents 30-40% change in modulus for the materials tested) is possible in response to an applied magnetic field for a composite containing 30% (V/V) iron particles. A simple quasi-static dipole model is presented to examine the magnetoviscoelastic effect of these elastomer composites. The model is semi-empirical in that it may be fit to experimental data over a broad range of applied fields by adjusting a parameter that accounts for unmodeled multipolar magnetic interactions between particles within the composite. Such elastomer composites hold promise in enabling variable stiffness devices and adaptive structures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3