Hydrodynamic response time of magnetorheological fluid in valve mode: model and experimental verification

Author:

Kubík MORCID,Šebesta K,Strecker ZORCID,Jeniš FORCID,Goldasz J,Mazůrek I

Abstract

Abstract The transient behaviour of magnetorheological (MR) actuators affects their performance in progressive semiactive control suspension systems. The two sources of the time delay between the control signal and damping force are (a) dynamics of MR damper hardware and (b) the MR fluid dynamics. The significant part of the MR fluid response time is the so-called hydrodynamic response time which is connected with the transient flow. Due to the above, the main aim of this paper is to experimentally determine the hydrodynamic response time of MR fluid and present systematic means for characterizing it via computational fluid dynamics (CFD) or analytical tools. The unique measurement method using an in-house patented slit flow rheometer is presented. The essence of the method relies on determining the pressure drop variation with the time spent by the fluid in the MR gap. The experimental determined hydrodynamic response time of MR fluid ranges from 0.4 to 1 ms for a selected gap size and a range of magnetic field stimuli. The results show that the higher the magnetic field, the lower the hydrodynamic response time is. Both CFD and analytical models exhibit similar trends as the experimental data. Moreover, the impact of temperature and gap size was determined. Here, the higher the gap size and temperature of MR fluid, the longer the response time is.

Funder

Grantová Agentura České Republiky

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3