Design and experimental characterization of a bypass magnetorheological damper featuring variable stiffness and damping

Author:

Abdalaziz Moustafa,Vatandoost HosseinORCID,Sedaghati RaminORCID,Rakheja Subhash

Abstract

Abstract Magnetorheological (MR) fluid dampers (MRFDs) with variable stiffness and variable damping capability (VSVD-MRFDs) have demonstrated excellent vibration mitigation performance. However, there are limited studies on the development of bypass VSVD-MRFDs which offer both higher dynamic range and output force, apart from simple maintenance and straightforward assembly. In this study, a novel large-capacity VSVD-MRFD with an annular-radial bypass MR valve, as opposed to the typical practice of implementing the valve within the traveling piston in the hydraulic cylinder of the MRFD, is proposed. The main contribution of the present work includes: (a) providing the conceptional design and experimental dynamic characterization of the proposed VSVD-MRFD; (b) investigating the feasibility of the proposed damper for realizing the VSVD characteristics under wide ranges of loading conditions. A test rig was, thus, designed to perform experimental characterization of the proposed VSVD-MRFD under wide ranges of mechanical loading and magnetic field conditions. A qualitative analysis including force-displacement, and force-velocity characteristics, together with a quantitative analysis including dynamic range, equivalent viscous and stiffness coefficients, were conducted as a function of loading frequency, displacement amplitude, and applied current. Results showed a maximum dynamic range and maximum output force of 4.5 and 7.8 kN, respectively. Also, the maximum relative increase in the equivalent viscous and stiffness coefficients were obtained, respectively, as 425% and 488%, when the applied current is increased from zero to 2 A. The results confirm the potential of the proposed VSVD-MRFD for applications in off-road suspension systems. The externally designed bypass MR valve permits a straightforward design modification for realizing wide scalability of damping force in different applications (e.g., off-road vehicle suspension systems).

Funder

Natural Sciences and Engineering Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3