Magneto-rheological dampers—model influence on the semi-active suspension performance

Author:

Tudon-Martinez Juan CORCID,Hernandez-Alcantara DianaORCID,Amezquita-Brooks Luis,Morales-Menendez Ruben,Lozoya-Santos Jorge de JORCID,Aquines Osvaldo

Abstract

Abstract Recently, automotive industry has adopted semi-active damper systems to improve handling and comfort properties of vehicles. Nowadays, Magneto-Rheological (MR) dampers are among the most effective solutions; with the control algorithm used for their operation being a key element. While basic controllers do not require mathematical damper models, improved performance can be achieved if these are available. Usually, the accuracy of a particular set of models can be assessed by evaluating standard quantitative metrics. However, two models with similar error-metrics can still have widely different qualitative properties. In this context, the main aim of this paper is to study the effects that may appear in the closed-loop performance of an automotive suspension system when the damper model is unable to represent crucial nonlinear MR phenomena. To highlight the model influence on the controller synthesis and subsequently on the suspension performance, two damper models with different accuracy levels were chosen: an Artificial Neural Networks (ANN)-based model is compared with the classical Bingham model. First, their accuracy is experimentally validated using typical error-metrics. Afterwards, the same suspension control strategy is designed using both models. Frequency-Estimation-Based control was selected because it better exploits available model data than other typical strategies such as sky-hook. The resulting performance is assessed with a software-in-the-loop approach using CarSim ® and complemented with a hardware-in-the-loop implementation using a CAN-bus, both closed-loop control cases use a Simulation-Oriented ANN model as benchmark to represent the MR damper nonlinearities. Results show that although the difference in error-metrics between models can be small using typical identification methods (e.g. 16% in one scenario), suspension performance in comfort and road-holding are significantly different. Error-metrics can be deceptive for assessing the effectiveness of MR damper models during the controller design phase. Accurate qualitative modeling in the pre/post-yield regions are the main factors which determine the resulting controller performance.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3