Investigating the importance of strain-coupling in lead-free 2–2 relaxor/ferroelectric composites with digital image correlation

Author:

Martin AlexanderORCID,Maier Juliana GORCID,Streich FriedemannORCID,Kamlah MarcORCID,Webber Kyle GORCID

Abstract

Abstract Ceramic–ceramic composite structures are a viable solution to improve the electromechanical response of lead-free ferroelectrics (FEs) through tuning of the local electrical and mechanical fields. The origin of the enhanced properties, however, remains unclear, as many of the possible effects, such as polarization and strain coupling (PSC) as well as interface diffusion, are interrelated and difficult to separate or directly investigate. In this study, we use a custom-built digital image correlation system to directly investigate the influence of strain coupling on 2–2 composites consisting of 0.90Na1/2Bi1/2TiO3–0.06BaTiO3–0.04K0.5Na0.5NbO3 (NBT–6BT–4KNN) and 0.94Na1/2Bi1/2TiO3–0.06BaTiO3 (NBT–6BT) by varying the mechanical interface contacts between end members. Specifically, two model cases were utilized to separate the relative contributions of the PSC mechanisms: (a) electrically connected and (b) mechanically and electrically connected. The local strain gradient was characterized through the thickness of the composite across different layers as well as the interface, where the macroscopic large signal longitudinal and transverse FE response was determined. Experimental results reveal an enhancement of the large signal piezoelectric coefficient d 33 by approximately 10% from 390 to 440 pm V−1 due to strain coupling.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3