Electromechanical coupling of a 3.88 W harvester with circumferential step-size field: modeling, validation and self-powered wearable applications

Author:

Peng Yan,Xu Wanqing,Gong Ying,Peng Xuzhang,Li ZhongjieORCID

Abstract

Abstract The fast advances in wearable electronic devices require clean and wearable power sources. This study presents a wearable electromagnetic energy harvester (EMEH) with high output performance mounted on the knee to obtain human vibration energy. The design forms a circumferential step-change magnetic field with high electromechanical coupling for high-efficiency energy conversion. We first formulate a theoretical model and simulate the analytical voltage via MATLAB. To predict the output performance of the EMEH, we conduct simulations via ANSYS. Subsequently, experiments are conducted to explore the output performance of the harvester in terms of the voltage, the output power, and the charging rate. The prototype generates a peak power of 3.88 W with a 449 Ω resistor under the excitation of 2.0 Hz. Additionally, the prototype charges a battery to 33.9% within 300 s at a running speed of 8 km h−1. This study provides a new perspective for advancing the development of watt-level self-powered wearables.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference62 articles.

1. Smart sensor systems for wearable electronic devices;An;Polymers,2017

2. Force detection, center of pressure tracking, and energy harvesting from a piezoelectric knee implant;Safaei;Smart Mater. Struct.,2018

3. Design and experimental studies of a heel-embedded energy harvester for self-powered wearable electronics;Li,2021

4. Perspectives in flow-induced vibration energy harvesting;Wang;Appl. Phys. Lett.,2021

5. A review on heat and mechanical energy harvesting from human–principles, prototypes and perspectives;Zhou;Renew. Sust. Energy Rev.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3