Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor

Author:

Park Tae-Hwan1,Kim Rae-Young1ORCID,Lim Sang-Kil2ORCID

Affiliation:

1. Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea

2. Department of Automotive Engineering, Honam University, Gwangju 62399, Republic of Korea

Abstract

As the capacity of the electrical system increases, so does the capacity of the electromagnetic contactor (MC). This increases the burden on the MC drive, which consumes unnecessary power in the system. MC is characterized by different initial starting-operating currents and holding currents to maintain contact. However, the operating voltage is constant regardless of the operating state. The initial starting current is considerably larger than that required to maintain contact. However, once the electromagnetic contactor is in the closed state, the current to maintain the contact is relatively small compared to the initial starting operating currents. Therefore, this study proposes two types of two-level excitation-current type MC drives that can reduce the drive power by employing features that have different conditions depending on the operating state of the MC. The overall drive power is reduced by applying different excitation currents based on the operating state. The controller and system proposed in this study were simulated using Powersim 9.1 (PSIM), and the feasibility was verified by manufacturing an analog-type driver using LM2576 and a digital-type driver using an MCU. The simulation and experimental results provide significant data for verifying the high performance and reliability of the proposed controller and system.

Funder

Honam University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3