High-speed interrogation of multiplexed fiber Bragg grating sensors for monitoring dynamic strain responses during a flexible plate impact on a water surface

Author:

Wong Kit PanORCID,Kim Hyun-TaeORCID,Wang AnORCID,Kiger KennethORCID,Duncan James HORCID,Yu MiaoORCID

Abstract

Abstract The investigation of fluid-structure interaction during the impact of a flexible plate on a water surface has received much attention. Measurement of highly transient, distributed strain of the plate during the slamming event is of great interest. Multiplexed fiber Bragg grating (FBG) strain sensors provide a promising solution for such measurement since these sensors are inherently waterproof and are immune to electromagnetic interference. However, in order to monitor the highly transient, distributed strain responses (up to 20 kHz), high-speed simultaneous interrogation of multiplexed FBG sensors is required, which is challenging by using commercial optical interrogators. We present a tunable-wavelength-filter-based optical interrogation system for high-speed simultaneous interrogation of multiplexed FBG strain sensors and demonstrate its application for structural monitoring of a flexible plate during the slamming event. The interrogation system employs a piezoelectric-transducer-controlled Fabry–Perot tunable filter. By operating the tunable filter at its resonant frequency and demodulating the sensor signal based on a peak tracing method, we demonstrated an interrogation speed of 100 kHz, an interrogation range of 98 nm, and an interrogation resolution of 5 pm. For proof-of-performance, the interrogation system was used to monitor the vibrational responses of a cantilever plate under impact loading and the measurement of vibration modes up to 6.785 kHz was demonstrated. Finally, the slamming experiments were carried out with six multiplexed FBG strain sensors mounted on a flexible plate. The dynamic strain measurement of the plate during the slamming event was successfully demonstrated by using the high-speed FBG interrogation system.

Funder

Office of Naval Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3