High-speed, large dynamic range spectral domain interrogation of fiber-optic Fabry–Perot interferometric sensors

Author:

Wong Kit Pan1,Kim Hyun-Tae1ORCID,Rajasekaran Keshav1,Yazdkhasti Amirhossein1,Sai Sudhakar Bala1,Wang An1,Lee Samuel E.1,Kiger Kenneth1,Duncan James H.1,Yu Miao1

Affiliation:

1. University of Maryland

Abstract

We report high-speed, large dynamic range spectral domain interrogation of fiber-optic Fabry–Perot (FP) interferometric sensors. An optical interrogation system employing a piezoelectric FP tunable filter and an array of fiber-Bragg gratings for wavelength referencing is developed to acquire the reflection spectrum of FP sensors at a high interrogation speed with a wide wavelength range. A 98 nm wavelength interrogation range was obtained at the resonance frequency of 110 k H z of the FP tunable filter. At this frequency, the resolution of the FP cavity length measurement was 1.8 nm. To examine the performance of the proposed high-speed spectral domain interrogation scheme, two diaphragm-based fiber-tip FP sensors (a pressure sensor and acoustic sensor) were interrogated. The pressure measurement results show that the high-speed spectral domain interrogation method has the advantages of being robust to light intensity fluctuations and having a much larger dynamic range compared with the conventional intensity-based interrogation method. Moreover, owing to its capability of measuring the absolute FP cavity length, the proposed interrogation system mitigates the sensitivity drift that intensity-based interrogation often suffers from. The acoustic measurement results demonstrate that the high-speed spectral domain interrogation method is capable of high-frequency acoustic measurements of up to 20 kHz. This work will benefit many applications that require high-speed interrogation of fiber-optic FP interferometric sensors.

Funder

Office of Naval Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3