Abstract
Abstract
The resonant actuation of dielectric elastomer actuators (DEAs) can greatly amplify the power outputs and energy efficiencies and has facilitated numerous applications in soft robotics. In many circumstances, the DEAs are mounted on robotic bodies that are made of soft materials or compliant structures. Such compliant supports can demonstrate an equivalent stiffness and inertia comparable to the DEAs, thereby complicating the dynamics of the DEAs and threatening the performance and controllability of the soft robots by introducing additional degrees of freedom to the systems. Toward the goal of achieving reliable and controllable resonating actuation of the DEAs on soft robots, the effects of compliant supports on the dynamics of DEAs require dedicated investigations. By adopting a double cone DEA configuration, this work conducts a comprehensive study on the dynamics of a double cone DEA-compliant support system. A nonlinear dynamic model of the double cone DEA-compliant support system is developed. Together with experimental studies, the dynamics of the system in different support configurations are characterized and the influences of the key parameters in the system are clarified. The key findings of this work can potentially guide the designs of future high-performance DEA-driven soft robots.
Funder
Guangdong Basic and Applied Basic Research Foundation
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献