A fast actuated soft gripper based on shape memory alloy wires

Author:

Li XiaozhengORCID,Ma Yongxian,Wu ChuangORCID,Wang Youzhan,Zhou ShoujunORCID,Gao XingORCID,Cao ChongjingORCID

Abstract

Abstract The application of shape memory alloy (SMA) actuated soft grippers is limited by their slow recovery speed. In order to further expand their application range, as one of the solutions to address this limitation, this paper proposes a fast actuated soft gripper based on SMA wire active heat dissipation and elastic rib combination to meet the rapid actuation and recovery. The structure primarily consists of a heat dissipation module capable of winding SMA wire and a soft structure resembling a scorpion tail with embedded supper elastic SMA wire. The geometric structure model, dynamics and SMA constitutive model and finite element model of the soft gripper are established, and the lateral deformation of soft bionic scorpion tail end is analyzed through simulations and experiments. In addition, the force in designed soft gripper tip and its ability to grasp different objects are also studied through experiments. The results show that the addition of a cooling fan increased the recovery rate by about 25%, and the force in soft bionic scorpion tail end can reach about 0.12 N. The designed soft gripper can successfully grasp objects with different softness, shape, size and weight. It lays a theoretical foundation and technical support for the development of soft grippers actuated by SMA in the future.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3