Design and experimental investigation of a positive feedback magnetic-coupled piezoelectric energy harvester

Author:

Shi RuiORCID,Chen Jiawei,Ma TianbingORCID,Li ChangpengORCID,Ouyang Yuqing

Abstract

Abstract A positive feedback magnetic-coupled piezoelectric energy harvester (PFM) is proposed to address the limitations of current piezoelectric energy collectors, including restricted acquisition direction, limited acquisition bandwidth, and low energy output. Firstly, the dynamic theoretical model of the energy harvester was established, and the optimization factors were explored, providing a solid theoretical foundation for subsequent research endeavors. The energy capture characteristics of rectangular beam and compound trapezoidal beam were compared through finite element simulation analysis. Subsequently, an experimental platform was constructed and an optimized experimental methodology was devised to analyze the energy capture characteristics and enhance the performance of the energy harvester. The results demonstrate that the positive feedback magnetic-coupled PFM with a trapezoidal beam exhibits superior energy capture efficiency. Furthermore, it is observed that the optimized energy harvester possesses wide frequency coverage, multi-directional capabilities, low-frequency adaptability, and facilitates easy vibration. When the 45 kΩ resistor is connected in series and subjected to a longitudinal external excitation amplitude of 0.5 g, it is capable of generating an average voltage and power output of 4.20 V and 0.39 mW respectively at a vibration frequency of 9 Hz. Similarly, when exposed to a transverse external excitation amplitude of 1 g, it can produce an average voltage output of 6.2 V and power output of 0.85 mW at a vibration frequency of 19 Hz. When the inclination angle of the energy harvester is set to 35 degrees, the maximum voltage output occurs at a frequency of 18 Hz and the Z-axis to X-axis force ratio of the energy harvester is 1.428. These research findings can serve as valuable references for piezoelectric energy harvesting applications in self-powered microelectronic systems.

Funder

Natural Science Foundation of Anhui Province

Anhui Provincial Key Research and Development Plan

Open Fund Project of State Key Laboratory of Mining

Natural Science Research Project of Anhui Educational

Laboratory of Mining Response and Disaster Prevention and Control

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3