New refined analytical models for various bonding conditions of an adhesively bonded smart PZT transducer using the EMI technique

Author:

Parpe Aditya,Saravanan T JothiORCID

Abstract

Abstract The electro-mechanical impedance (EMI) technique has emerged as a cost-effective and non-destructive technique to detect the possible damages in the structure using a piezoelectric transducer, especially, lead zirconate titanate (PZT). The adhesive bond layer plays an important role in the PZT patch-host structure interaction for monitoring structural damage. Two bonding conditions are investigated in this research paper. Primarily, the debonding phenomenon of the adhesive bond layer may misinterpret the EMI response on the damage caused in structure. Subsequently, the investigation included the protective layer at the top of the PZT transducer to avoid sensor degradation. However, the analytical models developed so far have not considered a protective layer at the top of the PZT transducer. This paper presents the novel two-dimensional (2D) analytical model for incorporating debonding concepts and the new refined 2D analytical model to include a protective layer in the study of surface-bonded PZT transducers. The proposed analytical models are verified with the experimental studies. The experimental and analytical results show good agreement, which confirms the effectiveness of the new models. This paper also incorporated the effect of each bonding condition for monitoring structural damage by implementing the EMI technique. For the simulation, the numerical investigations on the PZT transducer bonded on the metallic (aluminum and steel) and concrete blocks are performed using coupled field analysis through finite element (FE) modeling. It is found that each bonding condition has influenced the resulting signatures. The signatures obtained from developed theoretical models and numerical simulations using three-dimensional FE models for each bonding condition are compared to highlight the influence on structural damage detection. The trend of signatures is found to be matching satisfactory. Several parametric studies have been conducted to show the efficacy of the new refined model with a protective layer. It considers the different input properties of an adhesive layer, host structure, and temperature conditions. The influence of debonding of the protective layer is also studied, and the obtained results support the need for a protective layer in the models.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3