Preparation and investigation of high-performance flexible and transparent Ag/PDMS substrate with the bionic structure of cicada wings

Author:

He Mengqi,Wang Jun,Luo Qiongya,Cai Xin,Li Shuangyun,Xu Meifeng,Wang Chaonan

Abstract

Abstract In this study, an efficient, homogeneous, flexible and transparent Ag/Polydimethylsiloxane (PDMS) substrate with an orderly three-dimensional nanopillar structure was proposed. Ag NPs were thermally deposited on the flexible bionic PDMS support obtained by a two-step replication of cicada wings. Scanning electron microscope images reveal when the deposition time was 50 min, Ag NPs of proper size densely covered the entire PDMS nanopillar surface in the Ag-50/PDMS substrate. Both the gaps between the Ag NPs and those between the nanopillars acted as efficient electric field amplifiers. The enhancement factor (EF) of the Ag-50/PDMS substrate was calculated to be 2.89 × 107 by using crystal violet as the probe molecule. The Ag-50/PDMS substrate also exhibited good uniformity and reproducibility with a relative standard deviation of 1.46% and 11.45% respectively. The detection capability of the proposed flexible and transparent Ag-50/PDMS substrate in practical applications was demonstrated by the in-situ detection of 0.1 ppm malachite green on fish surfaces, indicating its great potential in the field of food monitoring.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3