Stability of volatile organic compounds in sorbent tubes following SARS-CoV-2 inactivation procedures

Author:

Lomonaco TommasoORCID,Salvo PietroORCID,Ghimenti Silvia,Biagini Denise,Vivaldi Federico,Bonini Andrea,Fuoco Roger,Di Francesco FabioORCID

Abstract

Abstract COVID-19 is a highly transmissible respiratory illness that has rapidly spread all over the world causing more than 115 million cases and 2.5 million deaths. Most epidemiological projections estimate that the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus causing the infection will circulate in the next few years and raise enormous economic and social issues. COVID-19 has a dramatic impact on health care systems and patient management, and is delaying or stopping breath research activities due to the risk of infection to the operators following contact with patients, potentially infected samples or contaminated equipment. In this scenario, we investigated whether virus inactivation procedures, based on a thermal treatment (60 °C for 1 h) or storage of tubes at room temperature for 72 h, could be used to allow the routine breath analysis workflow to carry on with an optimal level of safety during the pandemic. Tests were carried out using dry and humid gaseous samples containing about 100 representative chemicals found in exhaled breath and ambient air. Samples were collected in commercially available sorbent tubes, i.e. Tenax GR and a combination of Tenax TA, Carbograph 1TD and Carboxen 1003. Our results showed that all compounds were stable at room temperature up to 72 h and that sample humidity was the key factor affecting the stability of the compounds upon thermal treatment. Tenax GR-based sorbent tubes were less impacted by the thermal treatment, showing variations in the range 20%–30% for most target analytes. A significant loss of aldehydes and sulphur compounds was observed using carbon molecular sieve-based tubes. In this case, a dry purge step before inactivation at 60 °C significantly reduced the loss of the target analytes, whose variations were comparable to the method variability. Finally, a breath analysis workflow including a SARS-CoV-2 inactivation treatment is proposed.

Funder

SMOOTH project, Smart devices for air quality MOnitOring and human health

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3