Multi-Analytical Approach to Characterize the Degradation of Different Types of Microplastics: Identification and Quantification of Released Organic Compounds

Author:

Giaganini Giulia1,Cifelli Mario1,Biagini Denise1,Ghimenti Silvia1,Corti Andrea1,Castelvetro Valter1ORCID,Domenici Valentina1ORCID,Lomonaco Tommaso1ORCID

Affiliation:

1. Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy

Abstract

Microplastics and nanoplastics represent one of the major environmental issues nowadays due to their ubiquitous presence on Earth, and their high potential danger for living systems, ecosystems, and human life. The formation of both microplastics and nanoplastics strongly depends on both the type of pristine materials and the degradation processes related to biological and/or abiotic conditions. The aim of this study is to investigate the effect of two of the most relevant abiotic parameters, namely temperature and light, taken under direct control by using a Solar box, on five types of reference polymers: high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). A multi-analytical approach was adopted to investigate in detail the first steps of plastics degradation. Samples of plastic materials at different degradation times were analyzed by means of 1H NMR spectroscopy and thermal desorption gas chromatography mass spectrometry (TD-GC-MS) technique. Several minor molecular species released during degradation were consistently identified by both techniques thus providing a comprehensive view of the various degradation products of these five types of microplastics.

Funder

University of Pisa

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3