A benchmark study of data normalisation methods for PTR-TOF-MS exhaled breath metabolomics

Author:

Roquencourt CamilleORCID,Lamy Elodie,Bardin Emmanuelle,Devillier PhilippeORCID,Grassin-Delyle StanislasORCID

Abstract

Abstract Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models. Clinical trials: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).

Funder

Fondation Foch

Agence Nationale de la Recherche

Région Île de France

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3