Affiliation:
1. Center for Precision Medicine, Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
Abstract
Data normalization is a big challenge in quantitative metabolomics approaches, whether targeted or untargeted. Without proper normalization, the mass-spectrometry and spectroscopy data can provide erroneous, sub-optimal data, which can lead to misleading and confusing biological results and thereby result in failed application to human healthcare, clinical, and other research avenues. To address this issue, a number of statistical approaches and software tools have been proposed in the literature and implemented over the years, thereby providing a multitude of approaches to choose from – either sample-based or data-based normalization strategies. In recent years, new dedicated software tools for metabolomics data normalization have surfaced as well. In this account article, I summarize the existing approaches and the new discoveries and research findings in this area of metabolomics data normalization, and I introduce some recent tools that aid in data normalization.
Subject
Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献