Inferring the spin distribution of binary black holes using deep learning

Author:

Tang 唐 Li 丽,Fan 范 Xi-Long 锡龙

Abstract

Abstract The spin characteristics of black holes offer valuable insights into the evolutionary pathways of their progenitor stars. This is crucial for understanding the broader population properties of black holes. Traditional hierarchical Bayesian inference techniques employed to discern these properties often demand substantial time, and consensus regarding the spin distribution of binary black hole (BBH) systems remains elusive. In this study, leveraging observations from GWTC-3, we adopted a machine learning approach to infer the spin distribution of black holes within BBH systems. Specifically, we developed a deep neural network (DNN) and trained it using data generated from a Beta distribution. Our training strategy, involving the segregation of data into 10 bins, not only expedites model training but also enhances the versatility and adaptability of the DNN to accommodate the growing volume of gravitational wave observations. Utilizing Monte Carlo-bootstrap (MC-bootstrap) to generate observation-simulated samples, we derived spin distribution parameters: for the larger BH sample and for the smaller BH sample. Within our constraints, the distributions of component spin magnitudes suggest the likelihood of both black holes in the BBH merger possessing non-zero spin.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3