Multi-parameter optimization (grey relational analysis) and modeling of a cellulosic plant/glass fiber hybrid reinforced polymer composite (P x G y E z ) for offshore pressure vessels development

Author:

Samuel Bassey OkonORCID,Sumaila Malachy,Dan-Asabe Bashar

Abstract

Abstract The aim of this research is to produce more environmentally friendly materials for offshore applications. Due to their high water absorption, cellulosic fibers are known to be hydrophilic, making composites reinforced with them perform poorly and unreliable in humid settings. Previous research has focused on the development of natural fiber-based composite materials, but none has focused on the optimization of these cellulosic-based fiber-reinforced composites for offshore applications where weight, water absorption, and strength are important considerations. This paper presents the optimization of the composite material P x G y E z (with x, y, and z representing the volume fraction of pineapple leaf fiber (PALF) (P), the volume fraction of glass fiber (G), and fiber length respectively in an epoxy matrix) using the grey relational analysis for offshore pressure vessels. The material at 10% PALF, 15% glass fiber, and 15 mm fiber length, which is, P10G15E15 was the optimum, having a grey relational grade of 0.716. Also, statistical analysis showed that the treated PALF fibers contributed 45.73% to the water absorption properties of the P x G y E z composites as compared to the 0.3% contribution of glass fiber to the grey relational grade and a 9.5% contribution of fiber length. Also, there was an improvement in the grey relational grade by 73.61%. SEM and Fourier-transform infrared spectroscopy (FTIR) analysis showed microstructural and chemical formations that explained the water absorption behavior of the optimized hybrid composite. Also, regression analysis was carried out and an equation was developed for the prediction of grey relational grades at different combinations of P x G y E z . A thick pressure vessel developed with the optimized material was simulated and results showed operational reliability with its yield starting at 30.01 MPa, which is 44.98% higher than the 20.7 MPa limit by the ASME X Class I cylinders.

Publisher

IOP Publishing

Subject

Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3