MWCNT-Coated Glass Fabric/Phenol Composite Heating Panel Fabricated by Resin Infusion Process

Author:

Choi Seongpil1,Park Juyeop2,Kang Donghoon3,Lee Sang-Eui1

Affiliation:

1. Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea

2. Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea

3. Railroad Accident Research Department, Korea Railroad Research Institute, Uiwang 16105, Republic of Korea

Abstract

MWCNTs (multiwalled carbon nanotubes) were applied to fiber-reinforced composite materials with phenolic resin having flame retardance for the composite heating panels of railroad vehicles. Instead of dispersing MWCNTs in the matrix, the surface of a pristine plain-weave glass fiber fabric was coated with MWCNTs through a series of dip-coating and drying processes, followed by the resin infusion of the phenolic resin to make the composite heating panel. Before and after the resin infusion process, low percolation thresholds of 0.00216 wt%MWCNT (weight percent of MWCNTs) and 0.001 wt%MWCNT, respectively, were achieved, as were very high electrical conductivities of 47.5 S/m at 0.210 wt%MWCNT and 26.7 S/m at 0.116 wt%, respectively. The low threshold and high conductivity can be attributed to the formation of electrical pathways directly onto the glass fabrics. It was confirmed that mechanical properties such as modulus, strength, and maximum strain were at the same level as those of the pristine glass fabric composite. The heating performance with temperature uniformity, as well as the electrical and mechanical properties, indicates that the resin-infused glass fabric composite having MWCNTs directly coated onto the fabric surface can be a solution for lightweight structural composite heating panels for railway vehicles.

Funder

National Research 261 Foundation of Korea

Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3