Effects of ZnO nanoparticles on the antifungal performance of Fe3O4/ZnO nanocomposites prepared from natural sand

Author:

Taufiq Ahmad,Ulya Habibatun Nurul,Yogihati Chusnana Insjaf,Sunaryono ,Hidayat Nurul,Mufti Nandang,Masruroh ,Soda Shuto,Ishida Takayuki

Abstract

Abstract In the present study, the eco-friendly and economical methods have been developed by employing natural iron sand as a main precursor to create Fe3O4/ZnO nanocomposites (NCs). The formation of Fe3O4/ZnO NCs was confirmed using XRD, synchrotron-based SAXS, FTIR spectroscopy, and SEM. The XRD results revealed that the Fe3O4 and ZnO crystallised spinel cubic and hexagonal wurtzite structures. The SAXS results exposed the construction of fractal dimension with the values of 3.20–3.70, which indicated a compact structure in 3-dimensions. The SEM images showed that the morphology of the samples tended to agglomerate in nanometric size. The FTIR spectra proved the presence of the Fe–O and Zn–O bonds as the main components of the NCs. The UV–vis spectroscopy analysis revealed that the bandgap energy of the Fe3O4/ZnO NCs ranged from 2.244 to 3.533 eV. Furthermore, the Fe3O4/ZnO NCs demonstrated superparamagnetic behaviour with the blocking temperature below 212 K, and their saturation magnetisation increased with increasing Fe3O4 content. Interestingly, all samples demonstrated excellent inhibitory performance against C. albicans, which indicates that the Fe3O4/ZnO NCs synthesised by eco-friendly and economical methods from natural iron sand for the first time are novel candidates for use as high-performance antifungal agents.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3