Unconventional superconductivity in UTe2

Author:

Aoki DORCID,Brison J-PORCID,Flouquet J,Ishida KORCID,Knebel GORCID,Tokunaga YORCID,Yanase Y

Abstract

Abstract The novel spin-triplet superconductor candidate UTe2 was discovered only recently at the end of 2018 and already attracted enormous attention. We review key experimental and theoretical progress which has been achieved in different laboratories. UTe2 is a heavy-fermion paramagnet, but following the discovery of superconductivity, it has been expected to be close to a ferromagnetic instability, showing many similarities to the U-based ferromagnetic superconductors, URhGe and UCoGe. This view might be too simplistic. The competition between different types of magnetic interactions and the duality between the local and itinerant character of the 5f Uranium electrons, as well as the shift of the U valence appear as key parameters in the rich phase diagrams discovered recently under extreme conditions like low temperature, high magnetic field, and pressure. We discuss macroscopic and microscopic experiments at low temperature to clarify the normal phase properties at ambient pressure for field applied along the three axis of this orthorhombic structure. Special attention will be given to the occurrence of a metamagnetic transition at H m = 35 T for a magnetic field applied along the hard magnetic axis b. Adding external pressure leads to strong changes in the magnetic and electronic properties with a direct feedback on superconductivity. Attention is paid on the possible evolution of the Fermi surface as a function of magnetic field and pressure. Superconductivity in UTe2 is extremely rich, exhibiting various unconventional behaviors which will be highlighted. It shows an exceptionally huge superconducting upper critical field with a re-entrant behavior under magnetic field and the occurrence of multiple superconducting phases in the temperature-field-pressure phase diagrams. There is evidence for spin-triplet pairing. Experimental indications exist for chiral superconductivity and spontaneous time reversal symmetry breaking in the superconducting state. Different theoretical approaches will be described. Notably we discuss that UTe2 is a possible example for the realization of a fascinating topological superconductor. Exploring superconductivity in UTe2 reemphasizes that U-based heavy fermion compounds give unique examples to study and understand the strong interplay between the normal and superconducting properties in strongly correlated electron systems.

Funder

FETTOM

FRESCO

CEA

Kyoto University

KAKENHI

European Magnetic Field Laboratory

ICC

ANR

the Cross-Disciplinary Program on Instrumentation of CEA, the French Alternative Energies and the Atomic Energy Commission, the French National Agency

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3