Abstract
Abstract
Self-organized gold chains on vicinal Si(111) surfaces represent prototype examples of quasi-one-dimensional objects that are stabilized by hybridization with Si surface states. Their plasmons contain important information about the unoccupied bandstructure close to the Fermi level. Using Si(775)–Au as an example, we report here the modifications of the plasmon dispersion by the simple atomic adatom species H and O. Using a combination of low energy electron diffraction and high-resolution electron energy loss spectroscopy, we study the interconnection between plasmonic excitation and the corresponding local surface structure. Both adsorbates do not destroy metallicity, but, similar to Si(553)–Au, atomic hydrogen enhances dimerization of the Au chains, which at small concentrations counteracts the disorder introduced by random adsorption. This effect, most likely caused by electron donation of H to the surface states, is missing in case of adsorbed oxygen, so that only the effect of disorder is observed. For both adsorbates increasing disorder as a function of adsorbate concentration finally results in plasmon localization and opening of a band gap.
Funder
Deutsche Forschungsgemeinschaft
Niedersächsisches Ministerium für Wissenschaft und Kultur
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献