Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances

Author:

Mamiyev ZaminORCID,Balayeva Narmina O.ORCID

Abstract

Metal-sulfide nanostructures have piqued the interest of researchers for decades due to their intriguing optoelectronic properties. Indeed, significant advances and improvements have been made in various fundamental aspects for cutting-edge applications, such as water splitting and hydrogen production. Furthermore, rising demand for low-dimensional materials due to lower material consumption and improved performance due to quantum size effects has spurred research on semiconducting metal sulfides. Consequently, size-controllable nanostructures with diverse morphologies have been fabricated and studied for potential applications. However, the photocatalytic hydrogen evolution rate is still limited mainly by fast recombination rate, poor solar energy utilization and lack of surface-active sites for H2 reduction. This review will highlight particularly recent findings in metal-sulfide-based photocatalysts for hydrogen evolution reactions, considering the swift development and excellent research in this field. Following a brief overview of fundamental properties, we will explore state-of-the-art strategies for enhancing H2 generation efficiencies over the pristine, heterostructured and co-catalayzed metal-sulfide photocatalysts.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference167 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3