Machine learning for magnetic phase diagrams and inverse scattering problems

Author:

Samarakoon Anjana M,Alan Tennant DORCID

Abstract

Abstract Machine learning promises to deliver powerful new approaches to neutron scattering from magnetic materials. Large scale simulations provide the means to realise this with approaches including spin-wave, Landau Lifshitz, and Monte Carlo methods. These approaches are shown to be effective at simulating magnetic structures and dynamics in a wide range of materials. Using large numbers of simulations the effectiveness of machine learning approaches are assessed. Principal component analysis and nonlinear autoencoders are considered with the latter found to provide a high degree of compression and to be highly suited to neutron scattering problems. Agglomerative heirarchical clustering in the latent space is shown to be effective at extracting phase diagrams of behavior and features in an automated way that aid understanding and interpretation. The autoencoders are also well suited to optimizing model parameters and were found to be highly advantageous over conventional fitting approaches including being tolerant of artifacts in untreated data. The potential of machine learning to automate complex data analysis tasks including the inversion of neutron scattering data into models and the processing of large volumes of multidimensional data is assessed. Directions for future developments are considered and machine learning argued to have high potential for impact on neutron science generally.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3