Black Holes and the loss landscape in machine learning

Author:

Kumar Pranav,Mandal TaniyaORCID,Mondal Swapnamay

Abstract

Abstract Understanding the loss landscape is an important problem in machine learning. One key feature of the loss function, common to many neural network architectures, is the presence of exponentially many low lying local minima. Physical systems with similar energy landscapes may provide useful insights. In this work, we point out that black holes naturally give rise to such landscapes, owing to the existence of black hole entropy. For definiteness, we consider 1/8 BPS black holes in $$ \mathcal{N} $$ N = 8 string theory. These provide an infinite family of potential landscapes arising in the microscopic descriptions of corresponding black holes. The counting of minima amounts to black hole microstate counting. Moreover, the exact numbers of the minima for these landscapes are a priori known from dualities in string theory. Some of the minima are connected by paths of low loss values, resembling mode connectivity. We estimate the number of runs needed to find all the solutions. Initial explorations suggest that Stochastic Gradient Descent can find a significant fraction of the minima.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference131 articles.

1. A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou and K. Weinberger eds., Curran Associates Inc. (2012).

2. G.E. Dahl, D. Yu, L. Deng and A. Acero, Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition, IEEE Transactions on Audio, Speech, and Language Processing 20 (2012) 30.

3. C.D. Manning, Computational Linguistics and Deep Learning, Computational Linguistics 41 (2015) 701.

4. Y.-H. He, Deep-Learning the Landscape, arXiv:1706.02714 [INSPIRE].

5. Y.-H. He, Machine-learning the string landscape, Phys. Lett. B 774 (2017) 564 [INSPIRE].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-trivial saddles in microscopic description of black holes;Journal of High Energy Physics;2024-07-12

2. Counting $$\mathcal{N}$$ = 8 black holes as algebraic varieties;Journal of High Energy Physics;2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3