Abstract
Abstract
We report the path from the charge density wave (CDW)-bearing superconductor CuIr2Te4 to the metal insulator transition (MIT)-bearing compound CuIr2S4 by chemical alloying with the gradual substitution of S for Te. The evolution of structural and physical properties of the CuIr2Te4−x
S
x
(0 ⩽ x ⩽ 4) polycrystalline system is systemically examined. The x-ray diffraction (XRD) results imply CuIr2Te4−x
S
x
(0 ⩽ x ⩽ 0.5) crystallizes in a NiAs defected trigonal structure, whereas it adapts to the cubic spinel structure for 3.6 ⩽ x ⩽ 4 and it is a mixed phase in the doping range of 0.5 < x < 3.6. Unexpectedly, the resistivity and magnetization measurements reveal that small-concentration S substitution for Te can suppress the CDW transition, but it reappears around x = 0.2, and the CDW transition temperature enhances clearly as x augments for 0.2 ⩽ x ⩽ 0.5. Besides, the superconducting critical temperature (T
c) first increases with S doping content and then decreases after reaching a maximum T
c = 2.82 K for CuIr2Te3.85S0.15. MIT order has been observed in the spinel region (3.6 ⩽ x ⩽ 4) associated with T
MI increasing with x increasing. Finally, the rich electronic phase diagram of temperature versus x for this CuIr2Te4−x
S
x
system is assembled, where the superconducting dome is associated with the suppression and re-emergence of CDW as well as MIT states at the end upon sulfur substitution in the CuIr2Te4−x
S
x
chalcogenides.
Funder
Key R&D Program of China
NSFC
Research and Development Program of China
National Nature Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献