Author:
Luo Huixia,Xie Weiwei,Tao Jing,Inoue Hiroyuki,Gyenis András,Krizan Jason W.,Yazdani Ali,Zhu Yimei,Cava Robert Joseph
Abstract
Polymorphism in materials often leads to significantly different physical properties—the rutile and anatase polymorphs of TiO2 are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer-stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivity of TaSe2, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access two stable polytypes and two stable polymorphs in the TaSe2−xTex solid solution and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. The reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of Tc on subtle differences in the characteristics of the single layers present or from a surprising effect of the layer-stacking sequence on electronic properties that are typically expected to be dominated by the properties of a single layer in materials of this kind.
Funder
DOD | Army Research Office
U.S. Department of Energy
NSF | MPS | Division of Materials Research
Publisher
Proceedings of the National Academy of Sciences
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献