Abstract
Abstract
Key thermodynamic anomalies in density and compressibility, as well as the related stability limits, are determined using an ionic model for BeF2 which includes many-body polarization terms. BeF2 is chosen as an example of an archetypal network-forming system whose structure can be rationalised in terms of connected local tetrahedral coordination polyhedra. The anion dipole polarizability (which effectively controls the bond angles linking neighbouring tetrahedra) is used as a single free parameter in order to help rationalise the changes in the anomaly locations in phase space, whilst all other potential parameters remain fixed. The anomalies and stability limits systematically shift to lower temperature and higher pressure as the anion polarizability is increased. At high dipole polarizabilities the temperature of maximum density anomaly locus becomes suppressed into the supercooled regime of the phase space. The movements of the anomaly loci are analysed in terms of the network structure and the correlation with the inter-tetrahedral bond angles is considered. The high sensitivity of the anomalies to the details of the potential models applied is discussed with reference to previous works on related systems. The relationship to analogous studies on Stillinger–Weber liquids is discussed.
Funder
Engineering and Physical Sciences Research Council
University of Oxford
Subject
Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献