Phonon localization and resonance in thermal transport of pillar-based GaAs nanowires

Author:

Chen Jiao,Hou Zhichen,Chen Hongyu,Wang ZhaoliangORCID

Abstract

Abstract Exploring the possibility of nanostructures to modulate thermal conductivity (TC) contributes to promote a deeper comprehension of phonon diffusion and transport processes with the design of thermally insulated devices with high ZT values, and the GaAs nanowires (NWs) widely used in optoelectronic and microelectronic devices exhibit nondiffusive phonon thermal transport phenomena attributed to size effects, while ignoring the wave effects of phonons. Here, we simulate the TC of pillar-based GaAs NWs using non-equilibrium molecular dynamics and Monte Carlo simulations. The spatial distribution of density of states, temperature and heat flow distribution clouds, phonon participation rate, dispersion curves and phonon transmittance of atoms were calculated to investigate the phonon thermal transport processes in pillar-based NWs. The calculation results show that the pillar-based surface reduce the TC by 16%, the TC of pristine NW increases with axial and equivalent diameter, and the TC of pillar-based NW increases nonlinearly with axial length and increases with radial length. The phonon-surface scattering intensity is enhanced by the perturbation introduced by the pillared surface with a substantial decrease in phonon transmission capacity and a break in long-wavelength phonon transport even annihilated, which leads to surface phonon localization. Nanopillars not only enhance the phonon-surface scattering intensity at low frequencies, but also reconfigure the dispersion curve to reduce the group velocity. A series of flat resonance phonon modes are generated throughout the whole spectrum due to the hybridization between the local resonance phonon modes of the nanopillar and the phonon modes of the substrate NWs, resulting in the phonon modes shifting to lower frequencies. The pillar-based surface induced surface phonon localization and local resonance phenomenon contributes to the modulation of phonon thermal transport in GaAs-based field-effect transistors.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3