Morse potential specific bond volume: a simple formula with applications to dimers and soft–hard slab slider

Author:

Al-Raeei MarwanORCID

Abstract

Abstract Morse potential interaction is an important type of the vibrational potentials, especially, in the quantum mechanics which is used for the describing of general vibrational cases rather than the harmonic one. Morse potential has three fitting parameters, the depth of the Morse interaction, the distance of equilibrium bond and the range parameter which determines the range of the well. The Morse interaction specific bond volume is a three dimensional image of the bond length in its molar case, and this specific volume is the generalisation in three dimensions. In this study, the integral equation theory of the simple fluids has been applied for deriving a novel formula of the specific bond volume for Morse potential based on one of the approaches in the theory and based on the boundary conditions. We find that the specific bond volume of Morse potential depends on the absolute temperature via logarithmic function and square root function, besides, the specific bond volume of Morse potential decreases when the temperature decreases for different values of the molar volume and for different values of the depth of Morse well. In addition to that, the specific bond volume of Morse potential increases when the depth of the well decreases for different temperature values. Also, it is found from the formula which we derive that the specific bond volume of Morse potential increases via linear function with the molar volume of the system for different values of temperatures. We apply the formula of the specific bond volume of Morse potential for finding this specific volume for two molecules of the hydrogen halogens, which are the hydrogen chloride, and hydrogen fluoride. We find that the specific bond volume of the hydrogen chloride is greater than the one of the hydrogen fluoride. Also, we apply the formula for the two simple molecules gases which are the hydrogen molecules, and the nitrogen molecules. Besides, we apply the formula for the slab–slider system in two cases: hard and soft materials, and we concluded that the changes of the specific bond volume of the soft materials is faster than the hard materials. We believe that the formula which is found of the specific bond volume of Morse potential is general and can be applied for multiple materials.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3