Two-dimensional monolayer BiSnO3: a novel wide-band-gap semiconductor with high stability and strong ultraviolet absorption

Author:

Wu Hongbo,Meng WeizhenORCID,Zhu Chunhui,Tian Zhixue,Ma Fengxian,Jiao Yalong

Abstract

Abstract The exploration of two-dimensional (2D) wide-band-gap semiconductors (WBGSs) holds significant scientific and technological importance in the field of condensed matter physics and is actively being pursued in optoelectronic research. In this study, we present the discovery of a novel WBGS, namely monolayer BiSnO3, using first-principles calculations in conjunction with the quasi-particle G0W0 approximation. Our calculations confirm that monolayer BiSnO3 exhibits moderate cleavage energy, positive phonon modes, mechanical resilience, and high temperature resistance (up to 1000 K), which demonstrate its structural stability, flexibility, and potential for experimental realization. Furthermore, band-structure calculations reveal that monolayer BiSnO3 is a typical WBGS material with a band-gap energy (E g) of 3.61 eV and possesses a unique quasi-direct electronic feature due to its quasi-flat valence band. The highest occupied valence flat-band originates from the electronic hybridization between Bi-6p and O-2p states, which are in close proximity to the Fermi level. Remarkably, monolayer BiSnO3 exhibits a high absorption capacity for ultraviolet light spanning the UVA to UVC regions, displaying optical isotropy absorption and an unusual excitonic effect. These intriguing structural and electronic properties establish monolayer BiSnO3 as a promising candidate for the development of new multi-function-integrated electronic and optoelectronic devices in the emerging field of 2D WBGSs.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

PhD Research Startup Foundation of Hebei Normal University

Science and Technology Project of the Hebei Education Department

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3