Laser-induced enhancement of vertical polarization in ferroelectric bilayer WTe2

Author:

Yang QingORCID,Song Chenchen,Meng ShengORCID

Abstract

Abstract Light–matter interaction is one of the key means to manipulate the structural and electronic properties of materials, especially in two-dimensional (2D) layered materials, which are optically accessible due to their atomic thickness. We propose that an ultrashort laser pulse could drastically enhance the ferroelectric polarization of bilayer WTe2 by our real-time time-dependent density functional theory simulations. It is noted that bilayer WTe2 is a 2D sliding ferroelectric material recently discovered whose vertical polarization can be controlled by a slight horizontal displacement. We demonstrate that interlayer sliding and compression are simultaneously achieved upon illumination of linearly polarized near-infrared laser pulse, leading to an ultrafast electric polarization enhancement by ∼230% within hundreds of femtosecond. Two major contributions have been identified: (a) the piezoelectric effect due to laser-induced interlayer compression, caused by interlayer charge transfer and dipole-dipole interaction; (b) the interlayer sliding along the opposite direction of ferroelectric switching, induced by inhomogeneous excited carrier distribution and specific electron-phonon couplings. This work provides new insights on controlling ferroelectricity of layered materials, which may extend to other van der Waals bilayers and even bulk materials.

Funder

Research and Development Program of China

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3