Abstract
Abstract
Colloidal particles interacting via short-range attraction and long-range repulsion are known to stabilize finite-sized clusters under equilibrium conditions. In this work, the effect of self-propulsion speed (activity) and rotational diffusivity (D
r) on the phase behavior of such particles is investigated using Brownian dynamics simulations. The system exhibits rich phase behavior consisting of clusters of different kinds. The cluster size varies non-monotonically with activity: increasing first and decreasing at higher activity, thus driving cluster-to-fluid phase transition. Rotational diffusivity also facilitates the formation of clusters. Larger clusters could be stabilized at low D
r values while at high D
r values, clusters are stable even at higher activities. The analysis of the static structure factor of the system confirms that rotational diffusivity delays the cluster-to-fluid transition driven by activity.
Funder
Science and Engineering Research Board
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献