Spatiotemporal dynamics and emergent ordering in a mixture of morphologically distinct bacteria having different cell motility

Author:

Mondal Kaustav,Bera PalashORCID,Ghosh PushpitaORCID

Abstract

AbstractMicrobial communities exhibit complex behaviors driven by species interactions and individual characteristics. In this study, we delve into the dynamics of a mixed bacterial population comprising two distinct species with different morphology and motility aspects. Employing agent-based modeling and computer simulations, we analyze the impacts of size ratios and packing fractions on dispersal patterns, aggregate formation, clustering, and spatial ordering. Notably, we find that motility and anisotropy of elongated bacteria significantly influence the distribution and spatial organization of nonmotile spherical species. Passive spherical cells display superdiffusive behavior, particularly at smaller size ratios, while active rod-like cells exhibit normal diffusive behavior in the diffusion regime. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. Additionally, we identify the pivotal role of passive cell area fraction in influencing the response of active cells toward nematicity, with its dependence on size ratio. These findings shed light on the significance of morphology and motility in shaping the collective behavior of microbial communities, providing valuable insights into complex microbial behaviors with implications for ecology, biotechnology, and bioengineering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3