Investigation of out-of-plane ordered Ti4MoSiB2 from first principles

Author:

Helmer PernillaORCID,Lind HansORCID,Dahlqvist MartinORCID,Rosen JohannaORCID

Abstract

Abstract The laminated ternary boride Mo5SiB2 of T2 structure have two symmetrically inequivalent metallic sites, 16l and 4c, being occupied in a 4:1 ratio. The phase was recently shown to be stable for 80% substitution of Mo for Ti, at the majority site, forming an out-of-plane chemically ordered quaternary boride: Ti4MoSiB2. Considering that the hypothetical Ti5SiB2 is theoretically predicted as not stable, a key difference in bonding characteristics is indicated for full substitution of Mo for Ti at the metallic sites. To explore the origin of formation of Ti4MoSiB2, we here investigate the electronic properties and bonding characteristics of Mo5SiB2, Ti4MoSiB2 and Ti5SiB2 through their density of states, projected crystal orbital Hamilton population (pCOHP), Bader charge partitioning and second order force constants. The bond between the two different metallic sites is found to be key to the stability of the compounds, evident from the pCOHP of this bond showing a peak of bonding states close to the Fermi level, which is completely filled in Mo5SiB2 and Ti4MoSiB2, while only partially filled in Ti5SiB2. Furthermore, the lower electronegativity of Ti compared to Mo results in charge accumulation at the Si and B sites, which coincides with a reduced bond strength in Ti5SiB2 compared to Mo5SiB2 and Ti4MoSiB2. Bandstructure calculations show that all three structures are metallic. The calculated mechanical and elastic properties show reduced bulk (B) and elastic (E) moduli when introducing Ti in Mo5SiB2, from 279 and 365 GPa to 176 and 258 GPa, respectively. The Pugh criteria indicates also a slight reduction in ductility, with a G/B ratio increasing from 0.51 to 0.59.

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3