Arsenic doping and diffusion in CdTe: a DFT study of bulk and grain boundaries

Author:

Hatton Peter,Watts Michael,Zhou Ying,Smith Roger,Goddard PoojaORCID

Abstract

Abstract The doping of CdTe with As is a method which is thought to increase cell efficiency by increasing electron hole concentrations. This doping relies on the diffusion of As through CdTe resulting in AsTe substitution. The potential effectiveness of this is considered through kinetic and electronic properties calculations in both bulk and Σ3 and Σ9 grain boundaries using Density Functional Theory. In bulk zinc-blende CdTe, isolated As diffuses with barriers <0.5 eV and with similar barriers through wurtzite structured CdTe, generated by stacking faults, suggesting that As will not be trapped at the stacking faults and hence the transport of isolated As will be unhindered in bulk CdTe. Substitutional arsenic in bulk CdTe has little effect on the band gap except when it is positively charged in the AX-centre position or occurring as a di-interstitial. However in contrast to the case of chlorine, arsenic present in the grain boundaries introduces defect states into the band gap. This suggests that a doping strategy whereby the grain boundaries are first saturated with chlorine, before single arsenic atoms are introduced, might be more beneficial.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference32 articles.

1. First solar achieves yet another cell conversion efficiency world record;Solar,2016

2. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

3. CdTe Solar Cells at the Threshold to 20% Efficiency

4. Doping CdSe x Te 1−x /CdTe graded absorber films with arsenic for thin-film photovoltaics;Munshi,2019

5. Status and Potential of CdTe Solar-Cell Efficiency

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3