First principles prediction of novel quantum topological insulator state in two-dimensional XMg2Bi2 (X=Eu/Yb)

Author:

Choudhury Amarjyoti,Maitra TORCID

Abstract

Abstract Topological insulator (TIs), a novel quantum state of materials, has a lot of significance in the development of low-power electronic equipments as the conducting edge states display exceptional endurance against back-scattering. The absence of suitable materials with high fabrication feasibility and significant nontrivial bandgap, is now the biggest hurdle in their potential applications in devices. Here, we illustrate using first principles density functional calculations that the quintuplet layers of EuMg2Bi2 and YbMg2Bi2 crystals are potential two-dimensional TIs with a sizeable nontrivial gaps of 72 meV and 147 meV respectively. Dynamical stability of these quintuplet layers of EuMg2Bi2 and YbMg2Bi2 is confirmed by our phonon calculations. The weakly coupled layered structure of parent compounds makes it possible for simple exfoliation from a three-dimensional structure. We observed gapless edge states inside the bulk band gap in both the systems which indicate their TI nature. Further, we observed the anomalous and spin Hall conductivities to be quantized in two dimensional EuMg2Bi2 and YbMg2Bi2 respectively. Our findings predict two viable candidate materials as two dimensional quantum TIs which can be explored by future experimental investigations and possible applications of quantized spin and anomalous Hall conductance in spintronics.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3