Abstract
Abstract
In this work we explore the phase diagram of the binary Nb–S system from ambient pressures up to 250 GPa using ab initio evolutionary crystal structure prediction. We find several new stable compositions and phases, especially in the high-pressure regime, and investigate their electronic, vibrational, and superconducting properties. Our calculations show that all materials, besides the low-pressure phases of pure sulfur, are metals with low electron–phonon (ep) coupling strengths and critical superconducting temperatures below 15 K. Furthermore, we investigate the effects of phonon anharmonicity on lattice dynamics, ep interactions, and superconductivity for the novel high-pressure phase of Nb2S, demonstrating that the inclusion of anharmonicity stabilizes the lattice and enhances the ep interaction.
Funder
Vienna Scientific Cluster
Austrian Science Fund
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献