Abstract
AbstractMigdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH6 and CaH6, and to the covalently-bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H3S and BaSiH8 within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.
Publisher
Springer Science and Business Media LLC
Reference151 articles.
1. Lilia, B. et al. The 2021 room-temperature superconductivity roadmap. J Phys.: Condensed Matter 34, 183002 (2022).
2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).
3. Giustino, F. Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).
4. Oliveira, L. N., Gross, E. K. U. & Kohn, W. Density-functional theory for superconductors. Phys. Rev. Lett. 60, 2430 (1988).
5. Lüders, M. et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals. Phys. Rev. B 72, 024545 (2005).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献