Atomic insights into the influence of Bi doping on the optical properties of two-dimensional van der Waals layered InSe

Author:

Sui FengruiORCID,Jin Min,Zhang Yuanyuan,Hong Jin,Cheng Yan,Qi Ruijuan,Yue Fangyu,Huang Rong

Abstract

Abstract As a narrow-gap semiconductor, III–VI two-dimensional (2D) van der Waals layered indium selenide (InSe) has attracted a lot of attention due to excellent physical properties. For potential optoelectronic applications, the tunability of the optical property is challenging, e.g., the modulation of optical bandgap commonly by element doping. However, the deep understanding of the influence of element doping on the microstructure and the optical properties lacks of systematic investigation. In this work, by using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, we investigate the influence of Bi doping on controlling of the microstructure and optical properties of InSe single crystal in detail. The results show that Bi doping can introduce additional stacking faults in InSe single crystal, and more importantly, the atomic spacing and lattice constant of Bi-doped InSe are changed a lot as compared to that of the undoped one. Further optical characterizations including photoluminescence and transmission spectra reveal that Bi-doping can broaden the transmission wavelength range of InSe and make its optical bandgap blue-shift, which can also be physically interpreted from the doping-induced structure change. Our work expands new ideas for the optical property modulation of 2D thin-layer materials and brings new possibilities for the development of thin-layer InSe optical devices.

Funder

‘Shuguang Program’ supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission.

Innovation Foundation of Central

Shanghai Science and Technology Innovation Action Plan

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3