Thermal conductivity at finite temperature and electronic structure of the ultra-wide band gap fluorinated 2D GaN

Author:

Sun GuoqingORCID,Xiang Zheng,Ma JinlongORCID,Luo XiaobingORCID,Xu DongweiORCID

Abstract

Abstract Passivation makes 2D hexagonal structure more stable than the planar variant. Surface fluorinated monolayer of GaN have been found to have ultra-wide band gap and have promising applications in optoelectronic conversion devices. In this work, using theoretical method, we have explored the thermal conductivity as well as the electronic structure of F–GaN. It has a low thermal conductivity of 7.67 W (mK)−1 due to the low group velocity and short phonon lifetime. The calculated direct band gap value is 4.63 eV, which could be modulated by strain and biaxial strain is found to more effective. Attractively, direct band gap can be maintained under tensile strain. Breakdown of symmetry by uniaxial strain lifts the band degeneracy of the VBM, which will lead to polarized light emission. The in-depth analysis shows that Ga–F as well as N–F bonds are strongly ionic, which is responsible for its low thermal conductivity and ultra-wide band gap.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3