Abstract
Abstract
Two-dimensional (2D) transition metal dichalcogenides lateral heterostructures exhibit excellent performance in electrics and optics. The electron transport of the heterostructures can be effectively regulated by ingenious design. In this study, we construct a monolayer MoSe2/WSe2 lateral heterostructure, covalently connecting monolayer MoSe2 and monolayer WSe2. Using the Extended Huckel Theory method, we explored current-voltage characteristics under varied conditions, including altering carrier density, atomic replacement and interface angles. Calculations demonstrate a significant electrical rectification ratio (ERR) ranging from 200 to 800. Additionally, Employing Density Functional Theory with non-equilibrium Green’s function method, we investigated electronic properties, attributing the rectification effect to electronic state distribution differences, asymmetric transmission coefficients and band bending of projected local density of states. The expandability of the interfacial energy barrier enhances the rectification effect through adjustments in carrier concentration, atomic replacements and interface size. However, these enhancements introduce challenges such as increased electron-boundary scattering and reduced ambipolarity, resulting in a lower ERR. This study provides valuable theoretical insights for optimizing 2D electronic diode devices, offering avenues for precise control of the rectification effect.
Funder
National Natural Science Foundation of China