Triangular lattice models for pattern formation by core–shell particles with different shell thicknesses

Author:

Grishina V SORCID,Vikhrenko V SORCID,Ciach AORCID

Abstract

Abstract Triangular lattice models for pattern formation by hard-core soft-shell particles at interfaces are introduced and studied in order to determine the effect of the shell thickness and structure. In model I, we consider particles with hard-cores covered by shells of cross-linked polymeric chains. In model II, such inner shell is covered by a much softer outer shell. In both models, the hard cores can occupy sites of the triangular lattice, and nearest-neighbor repulsion following from overlapping shells is assumed. The capillary force is represented by the second or the fifth neighbor attraction in model I or II, respectively. Ground states with fixed chemical potential μ or with fixed fraction of occupied sites c are thoroughly studied. For T > 0, the μ(c) isotherms, compressibility and specific heat are calculated by Monte Carlo simulations. In model II, 6 ordered periodic patterns occur in addition to 4 phases found in model I. These additional phases, however, are stable only at the phase coexistence lines at the (μ, T) diagram, which otherwise looks like the diagram of model I. In the canonical ensemble, these 6 phases and interfaces between them appear in model II for large intervals of c and the number of possible patterns is much larger than in model I. We calculated line tensions for different interfaces, and found that the favorable orientation of the interface corresponds to its smoothest shape in both models.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3