Abstract
Abstract
Single-molecule junctions (SMJs) may bring exotic physical effects. In this work, a significant thermal rectification effect is observed in a cross-dimensional system, comprising a diamond, a single-molecule junction, and a carbon nanotube (CNT). The molecular dynamics simulations indicate that the interfacial thermal resistance varies with the direction of heat flow, the orientation of the crystal planes of the diamond, and the length of the CNT. We find that the thermal rectification ratio escalates with the length of the CNT, achieving a peak value of 730% with the CNT length of 200 nm. A detailed analysis of phonon vibrations suggests that the primary cause of thermal rectification is the mismatched vibrations between the biphenyl and carbonyl groups. This discovery may offer theoretical insights for both the experimental exploration and practical application of SMJs in efficient thermal management strategy for high power and highly integrated chips.
Funder
Supercomputing Center of Hangzhou Dianzi University
National Natural Science Foundation of China
Beijing Super Cloud Center
Fundamental Research Funds for the Central Universities
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献