Single-molecule field effect and conductance switching driven by electric field and proton transfer

Author:

Yan Zhuang12ORCID,Li Xingxing3ORCID,Li Yusen4ORCID,Jia Chuangcheng5ORCID,Xin Na2ORCID,Li Peihui5ORCID,Meng Linan2,Zhang Miao5ORCID,Chen Long4ORCID,Yang Jinlong3ORCID,Wang Rongming1ORCID,Guo Xuefeng25ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China.

2. Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

3. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Anhui 230026, P. R. China.

4. Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China.

5. Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China.

Abstract

Single-molecule junctions (SMJs) offer a novel strategy for miniaturization of electronic devices. In this work, we realize a graphene-porphyrin-graphene SMJ driven by electric field and proton transfer in two configurations. In the transistor configuration with ionic liquid gating, an unprecedented field-effect performance is achieved with a maximum on/off ratio of ~4800 and a gate efficiency as high as ~179 mV/decade in consistence with the theoretical prediction. In the other configuration, controllable proton transfer, tautomerization switching, is directly observed with bias dependence. Room temperature proton transfer leads to a two-state conductance switching, and more precise tautomerization is detected, showing a four-state conductance switching at high bias voltages and low temperatures. Such an SMJ in two configurations provides new insights into not only building multifunctional molecular nanocircuits toward real applications but also deciphering the intrinsic properties of matters at the molecular scale.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3