The interfacial properties of 2D metal-monolayer blue phosphorene heterojunctions and transport properties of their field-effect transistors

Author:

Chen Weiling,Lin Xian,Xu Guigui,Zhong KehuaORCID,Zhang Jian-MinORCID,Huang Zhigao

Abstract

Abstract Monolayer blue phosphorene (BlueP) has attracted much interest as a potential channel material in electronic devices. Searching for suitable two-dimensional (2D) metal materials to use as electrodes is critical to fabricating high-performance nanoscale channel BlueP-based field effect transistors (FETs). In this paper, we adopted first-principles calculations to explore binding energies, phonon calculations and electronic structures of 2D metal-BlueP heterojunctions, including Ti3C2-, NbTe2-, Ga(110)- and NbS2-BlueP, and thermal stability of Ti3C2-BlueP heterojunction at room temperature. We also used density functional theory coupled with the nonequilibrium Green function method to investigate the transport properties of sub-5 nm BlueP-based FETs with Ti3C2-BlueP electrodes. Our calculated results indicate that Ti3C2-BlueP has excellent thermal stability and may be used as a candidate electrode material for BlueP-based FETs. The double-gate can more effectively improve the device performance compared with the single-gate. The estimated source leakage current of sub-5 nm transistors reaches up to 369 µA µm−1, which is expected to meet the requirements of the international technology roadmap for semiconductors for LP (low-power) devices. Our results imply that 2D Ti3C2 may act as an appropriate electrode material for LP BlueP-based FETs, thus providing guidance for the design of future short-gate-length BlueP-based FETs.

Funder

National Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3