Analysis of the boundary integral equation for the growth of a parabolic/paraboloidal dendrite with convection

Author:

Titova E A,Alexandrov D VORCID

Abstract

Abstract The growth of a parabolic/paraboloidal dendrite streamlined by viscous and potential flows in an undercooled one-component melt is analyzed using the boundary integral equation. The total melt undercooling is found as a function of the Péclet, Reynolds, and Prandtl numbers in two- and three-dimensional cases. The solution obtained coincides with the modified Ivantsov solution known from previous theories of crystal growth. Varying Péclet and Reynolds numbers we show that the melt undercooling practically coincides in cases of viscous and potential flows for a small Prandtl number, which is typical for metals. In cases of water solutions and non-metallic alloys, the Prandtl number is not small enough and the melt undercooling is substantially different for viscous and potential flows. In other words, a simpler potential flow hydrodynamic model can be used instead of a more complicated viscous flow model when studying the solidification of undercooled metals with convection.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3